Wraith_Fiee的博客

P2085 最小函数值

2021-11-13 · 2 min read

原题传送门

思路:
对于nn个函数且 Fi(x)=Aix2+Bix+Ci(xN)F_i(x)=A_ix^2+B_ix+C_i (x\in N*) 来说,我们要求这nn个函数的前mm个函数值,并由小到大依次输出,我们很自然就可以想到用堆来存放函数值
最朴素的想法就是分别把这nn个函数,每个函数的前mm个值都放进一个小根堆中,那个对于这nmnm个值来说,前mm个值就是符合要求的值,但很不幸会TLETLE....
进一步想,由于x,Ai,Bi,CiNx,A_i,B_i,C_i\in N*,所以显而易见的是函数都是递增的,那么我们可以用一个大根堆qq,先将第一个函数的前mm个值都放入堆中,然后对接下来的每个函数的前mm个取值,如果函数值小于堆顶,就压入堆中,并将堆顶弹出,一旦函数值大于堆顶,由于函数递增,可以直接跳出这个循环,省略剩下明显不可能的值,达到优化的目的,最后将这mm个值放入数组,倒序输出即可

Code

#include <bits/stdc++.h>
using namespace std;
const int N=1e4+10;
typedef long long ll;
int n,m;
priority_queue<int>q;
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		int A,B,C;
		scanf("%d%d%d",&A,&B,&C);
		for(int j=1;j<=m;j++){
			int k=A*j*j+B*j+C;
			if(i==1) q.push(k);
			else{
				if(k<q.top()){
					q.push(k);
					q.pop();
				}
				else break;
			}
		}
	}
	int ans[N];
	for(int i=1;i<=m;i++){
		ans[i]=q.top();
		q.pop();
	}
	for(int i=m;i>=1;i--){
		printf("%d ",ans[i]);
	}
	return 0;
}

在吹不出褶皱的日子里发光
Powered by Gridea